Wzór na prędkość

W tym artykule znajdziesz komplet informacji o wzorze na prędkość. Uwaga! Oprócz podstawowego wzoru na prędkość średnią istnieje jeszcze kilka innych wzorów na prędkość, w zależności od ruchu jakim porusza się ciało.


Wzór na prędkość

Prędkość opisuje jak szybko przemieszcza się ciało względem układu odniesienia. Wzór na prędkość pozwala nam obliczyć wartość prędkości, niekiedy zwaną szybkością. Wartość prędkości możemy obliczyć dzieląc drogę przez czas, potrzebny na jej pokonanie,

Wzór na prędkość średnią to V = s / t, gdzie V – to prędkość, s – droga, t – czas.Wzór na prędkość

Jednostką prędkości w systemie SI jest m/s (metr na sekundę), w wielu krajach powszechnie używaną jednostką jest też km/h (kilometr na godzinę). 

Przykłady wykorzystania wzoru na prędkość

Znamy już wzór na wartość prędkości średniej więc możemy wykorzystać go w praktyce zaczynając od prostych przykładów z życia codziennego:

PRZYKŁAD: 
Uczeń pokonał dystans 60 metrów w ciągu 10 sekund. Jego prędkość średnia na tym odcinku to V = 60 m / 10 s = 6 m/s.

PRZYKŁAD: 
Samochód w drodze z Warszawy do Krakowa pokonał 294 kilometry w ciągu 3,5 godziny. Jego prędkość średnia na tej trasie to V = 294 km / 3,5 h = 84 km/h.

Jak korzystać ze wzoru na prędkość?

  • Jeżeli chcesz wykorzystać podstawowy wzór na prędkość średnią – upewnij się, czy w zadaniu należy obliczyć wartość prędkości średniej. Przykładowo, zadania z ruchem jednostajnie przyspieszonym najczęściej pytają o wartość prędkości chwilowej uzyskanej w ciągu danego czasu. 
  • Nie mieszaj jednostek – używaj albo metrów i sekund albo kilometrów i godzin. Najcześciej w zadaniach należy policzyć wartość prędkości w m/s i wówczas do wzoru trzeba podstawić drogę w metrach i czas w sekundach.
  • Jeżeli używasz drogi w kilometrach do obliczenia prędkości w km/h pamiętaj aby czas wyrazić w godzinach lub częściach godziny, w razie potrzeby zamieniając minuty na część godziny. Przykładowo: 1 godzina i 30 min to 1,5 godziny.    

Jak przeliczać km/h i m/s? 

Aby przeliczyć km/h na m/s dzielimy wartość prędkości przez 3,6. Aby przeliczyć m/s na km/h mnożymy wartość prędkości przez 3,6.

Dlaczego akurat 3,6? Ponieważ jedna godzina to 60 minut po 60 sekund czyli 3600 sekund, a. jeden kilometr to 1000 metrów. Przykładowo 36 km/h to 36 (1000 m/3600 s) czyli skracając 36 (1/3,6) m/s i ostatecznie 36/3,6 m/s = 10 m/s.

W zadaniach bardzo często występują wartości prędkości będące wielokrotnościami liczby 3,6, aby łatwo można je było przeliczyć:

  • 36 km/h to 10 m/s
  • 72 km/h to 20 m/s
  • 108 km/h to 30 m/s 

PRZYKŁAD: 
Podczas biegu na 60 metrów prędkość średnia ucznia wyniosła 6 m/s. Czy będzie on w stanie dogonić samochód poruszający się z prędkością 50 km/h?

  • Vs = 50 km/h
  • Vu = 6 m/s = 6 * 3,6 km/h = 21,6 km/h

Uczeń poruszający się z prędkością średnia 21,6 km/h nie będzie w stanie dogonić samochodu poruszającego się z prędkością 50 km/h. 

Wzór na prędkość w ruchu jednostajnym prostoliniowym

W ruchu jednostajnym prostoliniowym prędkość pozostaje stała. Prędkość w dowolnym momencie ruchu jest taka sami i równa prędkości średniej. Wartość prędkości możemy obliczyć dzieląc drogę przez czas, w którym ta droga została przebyta.

\large V = \frac{s}{t}

V – prędkość
s – droga
t – czas

Wzór na prędkość w ruchu jednostajnie przyspieszonym prostoliniowym

W ruchu jednostajnie przyspieszonym prostoliniowym prędkość rośnie w ciągu jednej sekundy o tę samą wartość. Przyspieszenie w tym ruchu ma stałą wartość.

Wzór na prędkość z przyspieszeniem

Wzór na prędkość chwilową w ruchu jednostajnie przyspieszonym prostoliniowym bez prędkości początkowej to V = a * t, gdzie a – to przyspieszenie, t – to czas.

V = a \cdot t

a – przyspieszenie
t – czas

Uwaga: Komplet wzorów z kinematyki znajdziesz na podstronie materiały z kinematyki. Zapraszam!


PRZYDATNY ARTYKUŁ? Udostępnij link innym:

Facebooktwittermail

Dodaj do Google Classroom

Następny temat:
Wzór na przyspieszenie

Pozostałe tematy z działu: Kinematyka
 
Układ odniesienia | Względność ruchu | Tor | Droga | Jednostka czasu: sekunda | Prędkość | Przyspieszenie | Ruch jednostajny prostoliniowy | Ruch jednostajnie przyspieszony (opóźniony) | Swobodny spadek